HEAT EXCHANGE IN THE FLOW OF NON-NEWTONIAN FLUIDS

P. V. Tsoi and Sh. Nuriddinov UDC 532.517.2:532.135

A method is proposed for solution of convective heat-exchange problems for the flow of
non-Newtonian fluids in pipes and channels. Problems with a linear rise in the tube wall
temperature are investigated in detail.

Various dependences between the siress and shear rate are known for non-Newtonian fluid flows [1].
The most widespread and simple is the power-law rheological flow
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The velocity profiles for laminar hydrodynamically stabilized flows of such media are determined by the
equations
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in a plane-parallel channel.

Results of investigations on heat exchange are presented in [2] by the method of the integral heat
balance far from the entrance to the tube for the flow of anomalous fluids with a rheological power law. The
authors show that the temperature curves differ only slightly for diverse values of m for substantially dif-
ferent velocity profiles. Such a result is evidently valid just for the case when the heat of friction is not
taken into the computation.

In order to determine the temperature in a fluid flow in a circular tube, and the length of the initial
section of thermal stabilization behind which the solutions in [2] will be valid, the following problem must
be solved:
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We obtain the solution to the problem by the method elucidated in [6, 7]. Let us assume

T, 9= [T, X)exp(—sX)dX;

0

then after using the Laplace transform, the problem is reduced to
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Following the method of Bubnov—Galerkin [5], let us seek the solution of the boundary value problem
6), (1) as

Ta(p, 9= @) + 3 a () s (o), ®
k=]
where the coordinate functions ¢;.(0) (k =1, 2, ..., n) are linearly independent and satisfy the homogeneous
boundary conditions
[‘Pk (P)] p=l =
The transform coefficients Zk(s) k=1,2,...,n) for which (8) best satisfies the boundary value
problem (6), (7) are determined from the system [7]
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be the solution of the governing Bubnov—Galerkin system for ®(p, X) = 0; A(s) = |A + Bs| is the main de~
terminant of the system (9). Going over to the domain of originals formally, we obtain the solution of the
problem posed as

Tolp, X) =9 X) + ¥ a. (X)), (12)
k=1

where
a (X)—ES AA"ES‘; exp [s, (X — )] 9* (o) dex

e* X) £ Ty — se(s); si are the roots of the equation A(s) = 0. The matrix of the main determinant of the
system (9) is symmetric, and its elements are positive. All the roots s; are hence real and nega-
tive.

Let us consider the problem for a linear rise in wall temperature
[T (o, X)]pey = To+ ATz =T+ AT*X, AT*=ATPeR. (13)
Let us first investigate the temperature field far from the tube entrance. We seek this solution in the form
T(p, X)=To+ AT*X + T, (p), (14)

where the unknown function Ty (o) satisfies the condition

T, ()= 0, (dTl) —0. (15)
dp Jo=o

769



Let us substitute (14) int6 (4) and let us assume @(p, X) =0, then

(3m + 1) '"+' .1 d( dT)
mt1 (1—p)ar SR Gl el 18)

Integrating this equation under the conditions (15), we obtain
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T, () = — (17)

The relative excess temperature is reduced to
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from which
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e., the temperature gradient (heat flux) at the wall is independent of the coordinate X and the rheological
parameter m for a linear rise in the wall temperature, and equals a constant.

The minimum Nusselt criterion is
2 ( @_)
O /o=t 8(Bm+1)(@Bm+ h(m 1)
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For a Newtonian fluid (m =1) we obtain

3 I, 1, 48
=X 22— pt), Nugy, = — = 4.364. 21
8@ X, h=X (8 5 +89) = (21)
Assuming m = 0 we obtain for channel flow
0, X,0)= X—,——:I} (1 —p%, Nugy;, ==8. (22)

Therefore, for the two particular cases we have obtained results agreeing with those of Ferguson [4] and
Ustimenko et al. [3]. The dependence of Nuy,j, on the parameter m, computed by means of (20), is repre-
sented graphically in Fig. 1.

For an ideally dilatant material, we obtain from (20) for m — «

lim N (m) = %—-_3871

The velocity profiles and temperatures in a non-Newtonian fluid stream are represented in Fig. 2
for different values of the parameter m on the stabilized sections.

Let us find the temperature in a stream of medium and the regularities of the heat exchange at the
initial section of the tube. Our preliminary studies of the temperature far from the tube entrance permit
the construction of the solution in that system of coordinate functions for which we obtain the best approxi-
mation. Let us seek the approximate solution in a family of functions of the form

5m? 1 2 Smtl
k()[ 1 bm + —3—+( 2 )pm ]p“k‘”. (23)
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For simplicity, all the subsequent calculations will be carried out for specific values of the param-
eter m.

For m =1/ 3 (pseudoplastic) the governing system (9) reduces for the third approximation (n = 3)
to the following:
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Fig. 1. Dependence of Nuy,;, on the parameter m.

Fig. 2. Velocity profiles (a) and temperatures (b) in a stream on non-Newtonian fluid for
m =0;1/3; 1; 3; «.
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from which we obtain by solving a truncated first-order system

- 3AT* [ 1 1
g =——|——
2 s s +4.2689
The relative excess temperature is written in a first approximation as
T—T 3 2 o? 1
B, X)= % =X — — [l —exp(—4.2689X)] [ =—— — -~ + —p"%|. 25
(o X) = —— - [1—ex( )](Q 4+3ﬁp) (25)

We determine 21_1 (s)y_ Ez (s) from the truncated second-order Bubnov~Galerkin system, and then find
the coefficient-originals a;(X), a,(X). Then the solution in a second approximation is

(o, X) = Ir;& — X — [0.0417 — 0.0445 exp (— 4.1802X) + 0.0028
% exp(—31.6180X)] (8 — 9p* + p®) — 0.0142 [exp (— 4.1802X) — exp (— 31.6180X)] (8> — 9p* + p?). (26)

For the mean mass temperature in the fluid stream we obtain

8 (X) = X — 0.1981 1 0.1931 exp (— 4.1802X) -+ 0.0050 exp (— 31.6180X). 27)

Let us write the local Nusselt criterion by referring the coefficient of heat exchange to the local tempera-
ture difference @y, ~ 8:

2 00 — — —_ —_
Nut = N(X) = _ (h) _ _5.053[1—0.727 exp (— 4.180X) — 0.273 exp (— 31.618X)] )
0,—0 \ dp /o 1 — 0.975 exp (— 4.180X) — 0.025 exp (—31.618X)
Behind the thermal stabilization section, we obtain from (25), (26), (28) for sufficiently large X
_x_3 (2 e 1 e) , _
8@ X)=X—- (9 et *) Im V0o =508, 29)
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Nu It is easy to note that the results obtained agree with the values of (18),
20) for m =1/ 3. Therefore, the approximate solutions far from the tube
1z . entrance agree with the exact solutions.

8 m=0 It foliows from (25), (26) that the discrepancy in the calculation of

\ /r/a / the first eigenvalue between the first and second approximations is about

4 - Z 2%. Equating the main determinant of the system (24) to zero, we obtain

N\
oo s, = —4.1742; s, = —24.8021; s,= — 123.6350.

0 9% 98 (2 46X We see that the difference in calculating the first eigenvalue between the
Fig. 3. Change in the local second and third approximations is 0.14%. Hence, it can be considered
Nusselt criterion for a that the first eigenvalue has been determined with sufficient accuracy.
linear rise in wall temper-~ Therefore, the temperature stabilization along a fluid stream, computed
atureand n =0; 1/3; 1; o, by means of the approximate solution (26), will practically agree with the

exact value.

For channel flow (m =0, w(p) = way = const) the relative excess temperature and local Nusselt criterion
are written in a second approximation as

T—T, 1
B, X)=—>=X——[1—11002 — 5.7842X) + 0,1002
0, X) =10 l exp( )+
X exp(— 36,8824X)] (1 — %) — 0.1072 [exp(— 5.7842X) — exp(— 36.8824X)] (0> — oY, (30)
—0. — 5.7842X) — 0.3285 —36.8824X
Nu = N (X)= 811 —0.6715 exp (— 5.7842X) exp ( )] 31)

1— 0.9568 exp (—5.7842X) — 0.0432 exp (—36.8824X) '

from which we obtain relationships agreeing with (18), (20) for m = 0 in the limit ag X — o,

The first eigenvalue in the approximate solution (30) equals 5.7842 and differs from the exact value
¢} = 5.7831, where ¢, is the first root of the zero-order Bessel function of the first series, by just 0.019%.
Therefore, the exponential temperature stabilization along a stream, computed by means of (30), will
agree with the temperature stabilization in the exact solution. Let us note that (4) for channel flow (m =0)
agrees with the equation of heat conduction. Hence, there is an opportunity to compare the approximate
and exact solutions. Such comparisons have shown that the solutions in a second and third approximation
permit carrying out highly accurate thermal engineering computations.

For an ideally dilatant medium (m = «) the temperature distribution in the stream for a linear rise
in the wall temperature reduces in a third approximation to the form

T—T
8, X)= — =

3
= X —0,0844 (5 — 9% -+ 40°) +- ¥ ¥} (p) exp (— 5, X), (32)

k=1
where
¥ (0) = (3.2484 — 1.610502 - 0.9301p%) v, (0);

P} (p) = (—0.2254 -+ 1.8831p% — 1.53390%) 1, (0);
¥; (p) = (0.0159 — 0,2726p% -+ 0.60580%) 1, (0); (33)

Vo (0)= -3%(5 —9p*+4p%); 5,=3.2641; s,=21.9749; s,=141.3009.

The local Nusselt criterion is

3 L]
oY,

/98 12.0,0844 — 2 2 : ( )  exp (—s,X)
D Jo=1 — k=] , (34)

3 1
3.1.0.0844 — 6 2 exp (—s,X) S ¥ (0) (p — p¥) dp
k=1 0

from which

limNu = —1—2— = 3.871.
3.1

772



Finally, let us consider the heat exchange in a flow of normal Newtonian fluid (m =1). Let us put
m =1 in (2) and let us solve the boundary value problem @), (5) for a linear rise in the wall temperature
13).

For n = 3 the system (9) reduces to

1 _ R A TN B
(”§§Z+—é@ )a‘(s)“L(lgzo * aset 3584 ) ()+( 384 71680 rs>a3(s)_ TR
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In our case T — s@(s) =—AT*/s. Determining the coefficients &'k(s) k =1, 2, 3) from this system and
returning to the domain of originals, we can find the approximate solution. We omit all intermediate cal-
culations and present the final resuits of a temperature computation in the third approximation

3
8, X)=X— —é— (3 —4p* + 0% + TIEE ¥ 6) exp (— 5,X), (36)

E=1
where

P} = 82392 — 14.0940p" + 8.4710p* — 3. 1430p° - 0.5268p%,
P, = —2.5883 + 7.19880" — 8.7904p* +- 5. 1568p¢ — 0.9769p"%
P; = 0.3491 — 1,1048p* + 2.3194p" — 2.0138p% + 0.4501p%
s, = 3.6572; s, = 23.1112; 5, = 137.6885%,
Let us note that to conserve the stability of the governing system (35), all the intermediate calculations
have been performed to the accuracy of the sixth place after the decimal.
For X =0, p =1, respectively, we obtain from (36)
T, O =Ty T{I, X)=T,+ AT*X,

i.e., the approximate solution satisfies the temperature conditions at the tube entrance and walls com-
pletely.

For the local Nusselt criterion we obtain

i
14— —5X
- ? )pzlexp( 5X)

o , (37)
1
Z;_ + 2 exp (—s,X) j ¥ (0) (0 — p%) dp

k=]

from which

48
limNu= — = 4.364.
im Nu T (38)

Let us note that the system (35) permits investigation of the heat exchange for a Newtonian fluid for any
ofther laws of wall temperature variation.

The change in the local Nusselt criterion along 2 flow of a medium is represented graphically in Fig.
3form =0;1/3; 1; e,
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The results of investigations show that the exponential drop in the local Nusselt criterion at a tube
entrance depends on the parameter m and the length of the thermal stabilization section depends on the
velocity profile. For an equivalent value of Pe the thermal stabilization section takes on a minimal value
for channel flow and 2 maximal value for an ideally dilatant medium (m = ).

In conclusion, let us note that the heat exchange in a flow of anomalous media in a plane channel taking
account of the heat of friction and other internal sources of heat liberation is investigated completely
analogously.

NOTATION

T(p, X) is the temperature in the fluid stream;

T(p, s) 1is the Laplace transform of the temperature;

r, R, p are the running radius, radius, and dimensionless radius of the tube;
= is the sign of transformation from original to transform and back;

s is the parameter of the infegral Laplace transform;

Way is the mean stream velocity.
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